Objectives

- Summarize data
- Make inferences, test hypothesis
- Find common patterns and classify samples

Steps

- Background subtraction, data filtering
- Normalization
- Statistical analysis
- Experimental design
- Clustering and pattern finding
Two-dye spotted arrays

(Hamadeh and Afshari, 2000)

Background subtraction
Filtering

- Remove dubious intensity observations
 - spots with flags
 - spots that do not reach some criteria

Normalization

- Removal of variation other than factor of interest
- Enables combination of data from different dyes and arrays
Examples of technical variation:

- A) Within array

- B) Across arrays

- Multiple normalizations must be evaluated:
 - Global and local
 - Shift, LOESS, Quantile, etc.
Statistical analysis of gene expression

- Identification of genes that across conditions:
 - are differentially expressed
 - have similar patterns

General per-gene model:

\[y_{ijkm} = \mu + A_i + D_j + (AD)_{ij} + C_k + e_{ijkm} \]

- \(y_{ijkm} \) = signal of spot m, array i, dye j, condition k
- \(\mu \) = average signal across all factors
- \(A_i \): global effect of array i, \(D_j \): global effect of dye j
- \((AD)_{ij} \): interaction between array and dye
- \((C)_k \): effect of condition level k (factors and/or covariates and/or interaction and/or blocks)
Potential terms in the BeeSpace models:

- Subspecies (e.g. *mellifera*, *ligustica*, *dorsata*)
- Genotype (e.g. SDI, NMQ)
- Colony type (e.g. SCC, TCC)
- Age (e.g. 5d, 15d)
- Maturation rate (e.g. precocious, normal)
- Treatment (e.g. cGMP, Mn, starvation)
- Roles (e.g. guards, soldiers)
- Food location (e.g. tunnel, field)
- Location (e.g. Illinois, Mexico, India)
- Colony (multiple colonies per condition)
- Bees (multiple bees nested within colony per condition)
- Adjustments for environment (e.g. temperature), etc.
Assessment of statistical significance

- a) adjust gene significance value for multiple testing
 - Bonferroni, FDR, re-sampling methods
- b) consider statistical and biological significance

Volcano Plot
Experimental design

- Consider the conditions: genotype (**Mellifera**, **Ligustica**, **Dorsata**), season (**Spring**, **Fall**), and treatment (**Hormone**, **Control**)
- Each one-way arrow represents an array

a) Reference

\[\text{MSH}_1 \rightarrow \text{MSH}_n \rightarrow \text{MFH}_1 \rightarrow \text{MFH}_n \rightarrow \text{DFC}_1 \rightarrow \text{DFC}_n \]

b) Loop

\[\text{MSH}_1 \rightarrow \text{MFH}_1 \rightarrow \text{MFC}_1 \rightarrow \text{DSC}_1 \rightarrow \text{DFC}_1 \]

- BeeSpace microarray experimental designs: reference, loop and hybrid

\[\text{MSH}_1 \rightarrow \text{MFH}_1 \rightarrow \text{MFC}_1 \rightarrow \text{Reference} \rightarrow \text{MFH}_n \rightarrow \text{DSC}_1 \rightarrow \text{DFC}_1 \]
Clustering, data reduction, visualization

- Cluster analysis: techniques for classifying genes or conditions into groups
- Clustering results depend on distance measurement and clustering method:
 - Euclidean distance, correlation, etc.
 - Average, Complete, etc.
 - Clusters should be consistent
- Dendrograms depict groups
Multidimensional Data Reduction

- Reduce many genes or conditions into few factors
- Principal components (pc):
- \(p \) linear functions (indices) of \(p \) original variables
 \[
 \begin{align*}
 pc_1 &= b_{11}(x_1) + b_{12}(x_2) + \ldots + b_{1p}(x_p) \\
 \vdots & \quad \vdots \\
 pc_p &= b_{21}(x_1) + b_{22}(x_2) + \ldots + b_{2p}(x_p) \\
 x_p &= \text{signal of gene or condition } p \\
 b_{1p} &= \text{weight of } p
 \end{align*}
 \]
Statistical Packages

- R (bioconductor or general functions)
- SAS

Depository of microarray data

- Array information will be deposited in MIAME compliant public databases (e.g. ArrayExpress)

Thank you

Questions?